- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Abdel-Aziz, Amal Kamal (1)
-
Abdelfatah, Sara (1)
-
Abdellatif, Mahmoud (1)
-
Abdoli, Asghar (1)
-
Abel, Steffen (1)
-
Abeliovich, Hagai (1)
-
Abildgaard, Marie H. (1)
-
Abudu, Yakubu Princely (1)
-
Acevedo-Arozena, Abraham (1)
-
Adamopoulos, Iannis E. (1)
-
Adeli, Khosrow (1)
-
Adolph, Timon E. (1)
-
Adornetto, Annagrazia (1)
-
Aflaki, Elma (1)
-
Agam, Galila (1)
-
Agarwal, Anupam (1)
-
Aggarwal, Bharat B. (1)
-
Agnello, Maria (1)
-
Agostinis, Patrizia (1)
-
Agrewala, Javed N. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Anthropogenic pressures on biodiversity necessitate efficient and highly scalable methods to predict global species distributions. Current species distribution models (SDMs) face limitations with large-scale datasets, complex interspecies interactions, and data quality. Here, we introduce EcoVAE, a framework of autoencoder-based generative models trained separately on nearly 124 million georeferenced occurrences from taxa including plants, butterflies and mammals, to predict their global distributions at both genus and species levels. EcoVAE achieves high precision and speed, captures underlying distribution patterns through unsupervised learning, and reveals interspecies interactions viain silicoperturbation analyses. Additionally, it evaluates global sampling efforts and interpolates distributions without relying on environmental variables, offering new applications for biodiversity exploration and monitoring.more » « lessFree, publicly-accessible full text available December 16, 2025
-
Klionsky, Daniel J.; Abdel-Aziz, Amal Kamal; Abdelfatah, Sara; Abdellatif, Mahmoud; Abdoli, Asghar; Abel, Steffen; Abeliovich, Hagai; Abildgaard, Marie H.; Abudu, Yakubu Princely; Acevedo-Arozena, Abraham; et al (, Autophagy)
An official website of the United States government
