skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shao, Bin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Anthropogenic pressures on biodiversity necessitate efficient and highly scalable methods to predict global species distributions. Current species distribution models (SDMs) face limitations with large-scale datasets, complex interspecies interactions, and data quality. Here, we introduce EcoVAE, a framework of autoencoder-based generative models trained separately on nearly 124 million georeferenced occurrences from taxa including plants, butterflies and mammals, to predict their global distributions at both genus and species levels. EcoVAE achieves high precision and speed, captures underlying distribution patterns through unsupervised learning, and reveals interspecies interactions viain silicoperturbation analyses. Additionally, it evaluates global sampling efforts and interpolates distributions without relying on environmental variables, offering new applications for biodiversity exploration and monitoring. 
    more » « less
    Free, publicly-accessible full text available December 16, 2025